
ASO APIs - Working With Normalized Attributes

1 Purpose
2 What Are Normalized Attributes

2.1 Select-One Attributes
2.1.1 Creation
2.1.2 Retrieval
2.1.3 Usage
2.1.4 Updating

2.2 Normalized String Attributes
2.2.1 Creation
2.2.2 Retrieval
2.2.3 Usage
2.2.4 Updating

2.3 Attribute Deletion
3 Summary

Purpose
This document will detail how to use ASO endpoints to create, retrieve, update, use and delete normalized attributes.

What Are Normalized Attributes
In ASO there are two different ways you can normalize attributes via the API. You can normalize attributes of value-type  and you can create string
attributes of value-type  which are also normalized. When select-one attributes are first created they must be given a set of values – these select-one
select-one values are used to validate any subsequent values entered for this attribute. A normalized string attribute does not require a predefined list of 
values – rather, every time an attribute value is entered for a normalized string attribute that value is added to the attribute's list of normalized values. This 
list of normalized values can then be used within ASO to create scenario rule groups, rule scopes, etc. Normalized values are not used for attribute value 
input validation however like select-one values.

Select-One Attributes

Now we will look at the creation, retrieval, usage and updating of select-one attributes.

Creation

In order to define a select-one attribute the available select-one values for the attribute must also be specified at the time the attribute is created. To create 
an attribute the ASO  endpoint will be used. You can find the full documentation for that endpoint . Before we look at the POST POST Attributes here
request, let's look at the JSON that will be sent in the request entity-body that will define the new select-one attribute. Note the population of the selectOn

 field in the request entity-body in the example JSON.eValues

http://docs.aso.engineering/ees.html#event__event_id__apiattributes_post


POST Attributes entity request-body

[
  {
    "attributeCode": "a1",
    "name": "Sample Supplier Attribute",
    "description": "Sample supplier select-one attr",
    "attributeType": "supplier",
    "type": "select-one",
    "selectOneValues": [
      "something",
      "something else",
      "again",
      "and again"
    ],
    "isRequired": false,
    "visibleToBidder": true,
    "visibleInManagement": true,
    "namePlural": "Sample Supplier Attributes",
    "nameMix": "Sample Supplier Attribute(s)",
    "isHistoric": false,
    "isLocked": false
  }
]

Now let's look at the curl request that will use the above JSON to actually create a new select-one attribute.

POST Attributes request

curl -X POST \
 -H 'Authorization: Bearer xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx' \
 -H 'x-api-key: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx' \
 -H 'Content-Type: application/vnd.sciquest.com.ees+json' \
 -H 'Accept: application/vnd.sciquest.com.ees+json' \
 -d '[{"attributeCode":"a1","name":"Sample Supplier Attribute","description":"Sample supplier select-one attr","
attributeType":"supplier","type":"select-one","selectOneValues":["something","something else","again","and 
again"],"isRequired":false,"visibleToBidder":true,"visibleInManagement":true,"namePlural":"Sample Supplier 
Attributes","nameMix":"Sample Supplier Attribute(s)","isHistoric":false,"isLocked":false}]' \
 "https://ees.aso-demo-api.va.jaggaer.com/event/22186/apiAttributes"

The success response from the request:

POST Attributes response – success

{
  "statuses": {
    "SUCCESS": [
      {
        "attributeId": "75",
        "attributeCode": "a1"
      }
    ]
  }
}

Retrieval

Once one or more attributes have been successfully created you can retrieve them with various get attribute endpoints. Below we will use the GET 
 endpoint which takes an attribute ID and returns a single attribute. You can find full documentation for that endpoint . Let's look at a curl Attribute here

request to retrieve our newly created select-one attribute.

http://docs.aso.engineering/ees.html#event__event_id__apiattribute__attribute_id__get


GET Attribute request

curl -X GET \
 -H 'Authorization: Bearer xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx' \
 -H 'x-api-key: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx' \
 -H 'Accept: application/vnd.sciquest.com.ees+json' \
 "https://ees.aso-demo-api.va.jaggaer.com/event/22186/apiAttribute/75"

Success response:

GET Attribute response

{
  "attributeId": 75,
  "name": "Sample Supplier Attribute",
  "description": "Sample supplier select-one attr",
  "attributeType": "supplier",
  "type": "select-one",
  "apiField": null,
  "isNormalized": true,
  "selectOneValues": [
    null,
    "again",
    "and again",
    "something else",
    "something"
  ],
  "fractionalPrecision": null,
  "isRequired": false,
  "lowValue": null,
  "highValue": null,
  "visibleToBidder": true,
  "visibleInManagement": true,
  "namePlural": null,
  "nameMix": null,
  "isHistoric": false,
  "isLocked": false
}

You can see the newly created select-one attribute (attribute 75) was returned in the response. Note that the  array not only contains selectOneValues
the pre-populated values from the POST request, but also the value  – all  will contain a default null value in addition to the pre-null selectOneValues
defined values. Also note the  field is set to  in the response data – this is not necessary to set when creating a select-one attribute isNormalized true
and will default to true implicitly, it is however used explicitly when creating normalized string attributes as we will see later.

Usage

Now that we have created a new select-one attribute let's look at how to actually use it. It was created it as a supplier attribute, so we will call the POST 
 endpoint to send new supplier entity data including a value for our new select-one attribute. You can find full documentation for the Suppliers POST 
 endpoint . Suppliers here

First we will construct the JSON request entity-body that we will be sending in the POST request – this comprises the definition of our new supplier.

http://docs.aso.engineering/ees.html#event__event_id__user__user_id__apisuppliers_post


POST Suppliers request entity-body

[
  {
    "supplierCode": "supp-1",
    "name": "Sample Supplier 1",
    "street1": "218 Murmur St.",
    "city": "Pittsburgh",
    "state": "PA",
    "postalCode": "15212",
    "countryCode": "US",
    "valid": true,
    "attributes": [
      {
        "id": "75",
        "value": "something else"
      }
    ]
  }
]

Now let's look at a curl request for  using the above request entity-body.POST Suppliers

POST Suppliers request #1

curl -X POST \
 -H 'Authorization: Bearer xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx' \
 -H 'x-api-key: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx' \
 -H 'Content-Type: application/vnd.sciquest.com.ees+json' \
 -H 'Accept: application/vnd.sciquest.com.ees+json' \
 -d '[{"supplierCode":"supp-1","name":"Sample Supplier 1","street1":"218 Murmur St.","city":"Pittsburgh","
state":"PA","postalCode":"15212","countryCode":"US","valid":true,"attributes":[{"id":"75","value":"something 
else"}]}]' \
 "https://ees.aso-demo-api.va.jaggaer.com/event/22186/user/155375/apiSuppliers"

The success response from the request:

POST Suppliers response – success

{
  "statuses": {
    "SUCCESS": [
      {
        "supplierId": "20",
        "supplierCode": "supp-1"
      }
    ]
  }
}

If you attempt to submit a value that is not represented in the  array, you will receive the following JSON detailing the error.selectOneValues



POST Suppliers request #2 (bad select-one value)

curl -X POST \
 -H 'Authorization: Bearer xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx' \
 -H 'x-api-key: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx' \
 -H 'Content-Type: application/vnd.sciquest.com.ees+json' \
 -H 'Accept: application/vnd.sciquest.com.ees+json' \
 -d '[{"supplierCode":"supp-2","name":"Sample Supplier 2","street1":"218 Murmur St.","city":"Pittsburgh","
state":"PA","postalCode":"15212","countryCode":"US","valid":true,"attributes":[{"id":"75","value":"something 
different"}]}]' \
 "https://ees.aso-demo-api.va.jaggaer.com/event/22186/user/155375/apiSuppliers"

Bad select-one value response:

POST Suppliers response – select-one value not found

{
  "statuses": {
    "ATTR_ERR_SELECT_ONE_NOT_FOUND": [
      {
        "supplierCode": "supp-2",
        "id": "75",
        "value": "something different"
      }
    ]
  }
}

Updating

It is possible to update the  array for an existing select-one attribute. This is done through the  and selectOneValues PATCH Attribute PATCH 
 endpoints – these PATCH endpoints will let you change several properties of existing attributes and full documentation for those endpoints can Attributes

be found  ( ) and  ( ). It is important to note when updating  through the PATCH endpoints here PATCH Attribute here PATCH Attributes selectOneValues
that the values will be completely replaced by the newly specified values. Let's look at an example using attribute 75 that we created earlier. First we will 
create the JSON request entity-body that will be sent in the  request. With a PATCH request you only need to specify the fields that you PATCH Attribute
want to change – in this case we are only going to update the  field.selectOneValues

PATCH Attribute request entity-body

{
  "selectOneValues": [
    "a",
    "new",
    "set",
    "of",
    "values"
  ]
}

Now let's look at the curl request that will use the above JSON to actually update .selectOneValues

PATCH Attribute request

curl -X PATCH \
 -H 'Authorization: Bearer xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx' \
 -H 'x-api-key: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx' \
 -H 'Content-Type: application/vnd.sciquest.com.ees+json' \
 -H 'Accept: application/vnd.sciquest.com.ees+json' \
 -d '{"selectOneValues":["a","new","set","of","values"]}' \
 "https://ees.aso-demo-api.va.jaggaer.com/event/22186/apiAttribute/75"

The success response from the request:

http://docs.aso.engineering/ees.html#event__event_id__apiattribute__attribute_id__patch
http://docs.aso.engineering/ees.html#event__event_id__apiattributes_patch


PATCH Attribute response – success

{
  "statuses": {
    "SUCCESS": [
      {
        "attributeId": "75"
      }
    ]
  }
}

Now if we retrieve the attribute again with , we can see that the  field has been updated.GET Attribute selectOneValues

GET Attribute request

curl -X GET \
 -H 'Authorization: Bearer xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx' \
 -H 'x-api-key: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx' \
 -H 'Accept: application/vnd.sciquest.com.ees+json' \
 "https://ees.aso-demo-api.va.jaggaer.com/event/22186/apiAttribute/75"

The success response from the request, with the  field updated:selectOneValues

GET Attribute response

{
  "attributeId": 75,
  "name": "Sample Supplier Attribute",
  "description": "Sample supplier select-one attr",
  "attributeType": "supplier",
  "type": "select-one",
  "apiField": null,
  "isNormalized": true,
  "selectOneValues": [
    null,
    "a",
    "new",
    "set",
    "of",
    "values"
  ],
  "fractionalPrecision": null,
  "isRequired": false,
  "lowValue": null,
  "highValue": null,
  "visibleToBidder": true,
  "visibleInManagement": true,
  "namePlural": null,
  "nameMix": null,
  "isHistoric": false,
  "isLocked": false
}

Normalized String Attributes

Now we will look at the creation, retrieval, usage and updating of normalized string attributes.

Creation



In order to define a normalized string attribute the required  field must be set to  and the optional  field for the attribute must type string isNormalized
be specified and set to  at the time the attribute is created. To create the attribute the ASO  endpoint will be used. You can find the true POST Attributes
full documentation for that endpoint . The following is a curl example invoking the  endpoint to create a normalized string attribute. here POST Attributes
Before we actually show the curl request, let's look at the JSON that will be sent in the request entity-body that will define the new normalized string 
attribute. Note the the presence of the  field in the request entity-body in the example JSON.isNormalized

POST Attributes entity request-body

[
  {
    "attributeCode": "a2",
    "name": "Normalized Supplier Attribute",
    "description": "Sample supplier normalized string attr",
    "attributeType": "supplier",
    "type": "string",
    "isNormalized": true,
    "isRequired": false,
    "visibleToBidder": true,
    "visibleInManagement": true,
    "namePlural": "Normalized Supplier Attributes",
    "nameMix": "Normalized Supplier Attribute(s)",
    "isHistoric": false,
    "isLocked": false
  }
]

Now let's look at the curl request that will use the above JSON to actually create a new normalized string attribute.

POST Attributes request

curl -X POST \
 -H 'Authorization: Bearer xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx' \
 -H 'x-api-key: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx' \
 -H 'Content-Type: application/vnd.sciquest.com.ees+json' \
 -H 'Accept: application/vnd.sciquest.com.ees+json' \
 -d '[{"attributeCode":"a2","name":"Normalized Supplier Attribute","description":"Sample supplier normalized 
string attr","attributeType":"supplier","type":"string","isNormalized":true,"isRequired":false,"
visibleToBidder":true,"visibleInManagement":true,"namePlural":"Normalized Supplier Attributes","nameMix":"
Normalized Supplier Attribute(s)","isHistoric":false,"isLocked":false}]' \
 "https://ees.aso-demo-api.va.jaggaer.com/event/22186/apiAttributes"

The success response from the request:

POST Attributes response – success

{
  "statuses": {
    "SUCCESS": [
      {
        "attributeId": "76",
        "attributeCode": "a2"
      }
    ]
  }
}

Retrieval

Once one or more attributes have been successfully created you can retrieve them with various get attribute endpoints. Below we will use the GET 
 endpoint which takes an attribute ID and returns a single attribute. You can find full documentation for that endpoint . Let's look at a curl Attribute here

request to retrieve our newly created normalized string attribute.

http://docs.aso.engineering/ees.html#event__event_id__apiattributes_post
http://docs.aso.engineering/ees.html#event__event_id__apiattribute__attribute_id__get


GET Attribute request

curl -X GET \
 -H 'Authorization: Bearer xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx' \
 -H 'x-api-key: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx' \
 -H 'Accept: application/vnd.sciquest.com.ees+json' \
 "https://ees.aso-demo-api.va.jaggaer.com/event/22186/apiAttribute/76"

The success response from the request:

GET Attribute response

{
  "attributeId": 76,
  "name": "Normalized Supplier Attribute",
  "description": "Sample supplier normalized string attr",
  "attributeType": "supplier",
  "type": "string",
  "apiField": null,
  "isNormalized": true,
  "normalizedValues": [
    null
  ],
  "fractionalPrecision": null,
  "isRequired": false,
  "lowValue": null,
  "highValue": null,
  "visibleToBidder": true,
  "visibleInManagement": true,
  "namePlural": null,
  "nameMix": null,
  "isHistoric": false,
  "isLocked": false
}

You can see the newly created normalized string attribute (attribute 76) was returned in the response. Note that the  array currently normalizedValues
only contains the value null – this is because all normalized string attributes still start out with no  except for the default  value normalizedValues null
which is added automatically. In the  section below we will see how additional values are added to the  array.Usage normalizedValued

Usage

Now that we have created a new normalized string attribute let's look at how to actually use it. We created it as a supplier attribute, so we will call the POST
 endpoint to send new supplier entity data including a value for our new normalized string attribute. You can find full documentation for the Supplier POST 
 endpoint . Suppliers here

First we will construct the JSON request entity-body that we will be sending in the POST request – this comprises the definition of our new supplier.

http://docs.aso.engineering/ees.html#event__event_id__user__user_id__apisuppliers_post


POST Suppliers request entity-body

[
  {
    "supplierCode": "supp-2",
    "name": "Sample Supplier 2",
    "street1": "222 Hangar St.",
    "city": "Pittsburgh",
    "state": "PA",
    "postalCode": "15212",
    "countryCode": "US",
    "valid": true,
    "attributes": [
      {
        "id": "76",
        "value": "normalized string value"
      }
    ]
  }
]

Now let's look at a curl request for  using the above request entity-body.POST Suppliers

POST Suppliers request #1

curl -X POST \
 -H 'Authorization: Bearer xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx' \
 -H 'x-api-key: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx' \
 -H 'Content-Type: application/vnd.sciquest.com.ees+json' \
 -H 'Accept: application/vnd.sciquest.com.ees+json' \
 -d '[{"supplierCode":"supp-2","name":"Sample Supplier 2","street1":"222 Hangar St.","city":"Pittsburgh","
state":"PA","postalCode":"15212","countryCode":"US","valid":true,"attributes":[{"id":"76","value":"normalized 
string value"}]}]' \
 "https://ees.aso-demo-api.va.jaggaer.com/event/22186/user/155375/apiSuppliers"

The success response from the request:

POST Suppliers response – success

{
  "statuses": {
    "SUCCESS": [
      {
        "supplierId": "21",
        "supplierCode": "supp-2"
      }
    ]
  }
}

Now if we retrieve the attribute again with , we can see that the value we added for attribute 76 above ("normalized string value") when GET Attribute
POSTing the new supplier, has been added to the  array for that normalized string attribute.normalizedValues

GET Attribute request

curl -X GET \
 -H 'Authorization: Bearer xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx' \
 -H 'x-api-key: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx' \
 -H 'Accept: application/vnd.sciquest.com.ees+json' \
 "https://ees.aso-demo-api.va.jaggaer.com/event/22186/apiAttribute/76"

The success response from the request, with updated  field:normalizedValues



GET Attribute response

{
  "attributeId": 76,
  "name": "Normalized Supplier Attribute",
  "description": "Sample supplier normalized string attr",
  "attributeType": "supplier",
  "type": "string",
  "apiField": null,
  "isNormalized": true,
  "normalizedValues": [
    null,
    "normalized string value"
  ],
  "fractionalPrecision": null,
  "isRequired": false,
  "lowValue": null,
  "highValue": null,
  "visibleToBidder": true,
  "visibleInManagement": true,
  "namePlural": null,
  "nameMix": null,
  "isHistoric": false,
  "isLocked": false
}

Unlike with select-one values which are used for input validation, normalized values can be used in ASO to create scenario rule groups, rule scopes, etc.

Updating

Once a string attribute has been created and specified as normalized or standard by using the isNormalized field during attribute creation it cannot be 
changed. Other attribute properties can be changed using the PATCH Attribute and PATCH Attributes endpoints, but whether or not an attribute is 
normalized is determined at creation time by the value of the isNormalized field. Full documentation for PATCH endpoints can be found  (PATCH here
Attribtue) and  (PATCH Attributes).here

Attribute Deletion

All attributes, regardless of what type they are, can be deleted using the  endpoint. You can find full documentation for that endpoint DELETE Attribute here
. Let's look at a curl request to delete one of the attributes we created above.

DELETE Attribute request

curl -v -X DELETE \
 -H 'Authorization: Bearer xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx' \
 -H 'x-api-key: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx' \
 -H 'Content-Type: application/vnd.sciquest.com.ees+json' \
 -H 'Accept: application/vnd.sciquest.com.ees+json' \
 "https://ees.aso-demo-api.va.jaggaer.com/event/22186/apiAttribute/75"

Note that the only response from a successful  request will be an  response code.DELETE Attribute HTTP 204 No Content

Summary
That should get you started working with ASO normalized attributes. All current ASO API documentation can be found . here Documentation is updated 
often. If you have any further questions or concerns do not hesitate to get in touch with your ASO Jaggaer contact.

http://docs.aso.engineering/ees.html#event__event_id__apiattribute__attribute_id__patch
http://docs.aso.engineering/ees.html#event__event_id__apiattributes_patch
http://docs.aso.engineering/ees.html#event__event_id__apiattribute__attribute_id__delete
http://docs.aso.engineering/ees.html#event__event_id__apiattribute__attribute_id__delete
http://docs.aso.engineering/

	ASO APIs - Working With Normalized Attributes

