
1.
a.

i.
1.

2.
2.

a.

3.
a.
b.

4.

a.

ASO Apis - Working With Asynchronous Entity Imports
(Uploads)

1 Purpose
2 Workflow

2.1 Client Initiates Import Process
2.2 Client Uploads Import File
2.3 Asynchronous work (non-client step)
2.4 Client Polls Status
2.5 Client Downloads Result File
2.6 Client Processes Result File

3 Details
3.1 GET Upload URL

3.1.1 Request
3.1.1.1 Headers
3.1.1.2 URL Parameters

3.1.2 Response
3.2 Pre-Signed PUT Entity Upload URL (uploadUrl)

3.2.1 Request
3.2.1.1 Headers
3.2.1.2 Payload

3.2.1.2.1 Rate
3.2.1.2.2 Example

3.2.2 Response
3.3 GET Async Status (statusUrl)

3.3.1 Request
3.3.1.1 Headers
3.3.1.2 URL Parameters

3.3.2 Response
3.3.2.1 Examples

3.4 Pre-Signed GET Result URL (resultUrl)
3.4.1 Request
3.4.2 Response

3.5 Result File
3.5.1 Status Codes
3.5.2 Examples

4 In Practice
4.1 Initiate the Asynchronous Rate Import Process
4.2 Upload the Rate Import File
4.3 Check the Status of the Import Process
4.4 Download the Result File

5 Summary

Purpose
Depending on the number of entities uploaded in a given request and the validation and processing required for a given entity type, it is often easy to
exceed the best practice request-size or request-time limits for REST endpoints. In order to address this ASO has created an asynchronous entity import
API workflow. This document will detail how to use the ASO endpoints that implement this asynchronous workflow.

Workflow
The asynchronous import workflow can be used to upload various entities including rates and bids, and proceeds as follows:

Client Initiates Import Process
Client initiates asynchronous import process by calling EES endpoint GET Upload URL

An and a are returned in the endpoint response along with url expiration detailsuploadUrl statusUrl
The is a customer specific AWS pre-signed PUT URL used to upload entity data (in JSON format) uploadUrl to a
private S3 bucket where it is stored encrypted (AES-256) before it is picked up and processed by ASO
The is an ASO endpoint used to statusUrl poll the status of the import process

Client Uploads Import File
Client uploads entities in JSON format to the received in step 1.i where it is stored encrypted, and queued to await uploadUrl
processing

Asynchronous work (non-client step)
The import JSON file is retrieved from the queue, validated, and processed
When processing has completed a new AWS pre-signed URL is generated to a private S3 bucket where a JSON result file with the

 detailed results of the import process is uploaded for retrieval by the client
Client Polls Status

4.

a.
i.

5.
a.

6.
a.

i.

Client polls the (endpoint) received in step 1.i and waits for the status to change to statusUrl GET Async Status completed
When the returns a status of the response will also contain a – a pre- GET Async Status endpoint completed resultUrl
signed GET URL (generated in step 3b) pointing to the JSON result file containing all relevant information describing the
success or failure for each of the entities sent in the step 2 upload

Client Downloads Result File
Client downloads the result file using received in step 4.i resultUrl

Client Processes Result File
Client processes result file noting successes and failures for each entity imported

If any entities were identified to have failed the import process they should be fixed, and then resent in a new entity import
process (starting over with step 1)

Details
In the following section we will take a closer look at each of the endpoints/requests involved in the asynchronous entity import process.

GET Upload URL

To initiate the asynchronous entity import process a client will first call the ASO endpoint . For complete documentation of this endpoint, GET Upload URL
see .GET Entity Upload URL

Request

GET /event/ /user/ /entity/{event-id} {user-id} {entity}/uploadUrl

Headers

Authorization Bearer <ASO-bearer-access-token>

X-API-Key <ASO-customer-API-key>

Accept application/vnd.sciquest.com.ees+json

URL Parameters

event-id ASO entity ID

user-id ASO user ID

entity ASO entity – one of [,]rate bid

Response

FIeld Type Description

uploadUrl string Pre-signed URL used to upload entity import file

uploadUrlExpiresInSeconds number Seconds remaining before expiresuploadUrl

statusUrl string URL for polling status of async entity import process

statusUrlExpiresInSeconds number Seconds remaining before expires statusUrl

200 OK

http://docs.aso.engineering/ees.html#event__event_id__user__user_id__entity__entity__uploadurl_get

GET Upload URL

{
 "uploadUrl": "https://s3.amazonaws.com/us-east-1.aso.devcurr.api.async-uploads-import
/259_22244_devcurr_rate_0daef4fa-21aa-4575-8462-e57fb286dce8?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-
Date=20230510T172850Z&X-Amz-SignedHeaders=content-type%3Bhost&X-Amz-Expires=300&X-Amz-
Credential=AKIAXROTDM7T32UWEPUQ%2F20230510%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-
Signature=7d8a19e16233c21bc03705b65a8888b7722efee0b03f4b81cb42610b7d27c229",
 "uploadUrlExpiresInSeconds": 300,
 "statusUrl": "https://ees.aso-demo-api.va.jaggaer.com/asyncStatus
/MTY4MzczOTczMDM3NjoyMjI0NDo1MDowZGFlZjRmYS0yMWFhLTQ1NzUtODQ2Mi1lNTdmYjI4NmRjZTg6dXBsb2Fk",
 "statusUrlExpiresInSeconds": 1800
}

Pre-Signed PUT Entity Upload URL ()uploadUrl

The returned in the endpoint response is an AWS pre-signed PUT request that requires a custom Accept header and a uploadUrl GET Upload URL
JSON entity import file to be sent in the request.

Request

PUT

Headers

Accept application/vnd.sciquest.com.ees+json

Payload

JSON file containing entities to import.

Payloads are entity-specific and currently only rate entities are supported. Following are the rate entity import model details.

Rate

Field Description Type Parent Required Notes

rateCode Unique code to identify
rate

string root yes Max length 75

supplierId ASO supplier ID number root yes

itemId ASO item ID number root yes

alternate Alternate indicator number root yes Initial rate must be 0; subsequent rates cannot exceed max-
alternates configured in event

rateCurrency Rate currency code string root yes Three character currency code string

contractId Contract ID string root no

contractName Contract name string root no

rateEffectiveD
ate

Date rate takes effect number root no Epoch time in millis (13 digits)

rateExpiration
Date

Date rate expires number root no Epoch time in millis (13 digits)

rateDesignation Identifies a rate's
intended use

one of [, Primary Secon
]dary

root no Can only choose one of the available values

attributes List of rate attributes list root no

id ASO attribute ID string attributes yes

value Attribute value string attributes yes

Example

The following example will resemble most event rate imports.

Sample Rate Import JSON

[
 {
 "rateCode": "rate-630",
 "supplierId": 6,
 "itemId": 3,
 "alternate": 0,
 "rateCurrency": "USD",
 "contractId": "c630",
 "contractName": "Rate-C630",
 "rateEffectiveDate": 1663992000000,
 "rateExpirationDate": 1695528000000,
 "rateDesignation": "Primary",
 "attributes": [
 {
 "id": "17",
 "value": "630.00"
 },
 {
 "id": "42",
 "value": "Pittsburgh"
 },
 {
 "id": "43",
 "value": "Helsinki"
 }
]
 },
 ...
 {
 "rateCode": "rate-640",
 "supplierId": 6,
 "itemId": 4,
 "alternate": 0,
 "rateCurrency": "USD",
 "contractId": "c640",
 "contractName": "Rate-C640",
 "rateEffectiveDate": 1663992000000,
 "rateExpirationDate": 1695528000000,
 "rateDesignation": "Primary",
 "attributes": [
 {
 "id": "17",
 "value": "640.00"
 },
 {
 "id": "42",
 "value": "Dublin"
 },
 {
 "id": "43",
 "value": "Stockholm"
 }
]
 }
]

The only thing that will change from entity to entity and event to event when defining the JSON for an import is the entity's attributes section. In our
example above we are submitting values for three different attributes – attributes 17, 42, and 43. In order to determine exactly what attributes are available
and required for a specific event and entity, use the ASO endpoint. GET Attributes by Type

Response

200 OK

Successful upload of the import file using the pre-signed results in a .uploadUrl 200 OK

http://docs.aso.engineering/ees.html#event__event_id__attributetype__attribute_type__apiattributes_get

403 Forbidden

A connection to the pre-signed – indicated by the field – will result in auploadUrl after the URL has expired uploadUrlExpiresInSeconds 403
.Forbidden

GET Async Status ()statusUrl

The returned in the endpoint response is an ASO endpoint that is used to poll for the status of the statusUrl GET Upload URL GET Async Status
asynchronous import process. For full documentation see .GET Async Status

Request

/asyncStatus/{encoded-async-pid}

Headers

Authorization Bearer <ASO-bearer-access-token>

X-API-Key <ASO-customer-API-key>

Accept application/vnd.sciquest.com.ees+json

URL Parameters

encoded-async-pid Base-64 encoded value that identifies the async process

Response

FIeld Type Description Notes

status enum('initialized','processing','completed','failed','ca
ncelled')

Async process status

resultUrl string Pre-signed URL used to download
results file

This field only visible when status is comp
leted

resultUrlExpiresInSec
onds

number Seconds remaining before resultUrl
expires

This field only visible when status is comp
leted

Examples

200 OK

{
 "status": "initialized"
}

The status will be returned until an import file is uploaded begins processing.initialized and

200 OK

{
 "status": "processing"
}

The status indicates that the asynchronous import is in process and polling (if desired) should continue.processing

200 OK

http://docs.aso.engineering/ees.html#asyncstatus__encoded_async_pid__get

{
 "status": "completed",
 "resultUrl": "https://s3.amazonaws.com/us-east-1.aso.devcurr.api.async-uploads-result/259_22244_b6e5e4fb-d37b-
47db-ae8f-a37bef7e0bf3?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20230511T145312Z&X-Amz-SignedHeaders=host&X-
Amz-Expires=600&X-Amz-Credential=AKIAXROTDM7T32UWEPUQ%2F20230511%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-
Signature=f86a039f050ce703c7843474663d529a47ce2832f6d51f066389d8a389c8ddf6",
 "resultUrlExpiresInSeconds": 596
}

The status indicates that the asynchronous import process has completed and the is a pre-signed GET URL that allows the client completed resultUrl
to download the waiting result file.

403 Forbidden

Attempt to connect – indicated by the field returned in the initial request – after the URL has expired statusUrlExpiresInSeconds GET Upload URL
will result in a response.403 Forbidden

Pre-Signed GET Result URL ()resultUrl

The returned in the endpoint response is an AWS pre-signed GET request that gives access to the asynchronous import resultUrl GET Async Status
process result file.

Request

GET

Response

200 OK

Connection to the pre-signed URL will return and a stream of the expected results file.200 OK

403 Forbidden

A connection to the pre-signed – indicated by the field – will result in aresultUrl after the URL has expired resultUrlExpiresInSeconds 403
.Forbidden

Result File

The result file downloaded from will be in JSON form and follows the established standard of existing ASO POST/PATCH/PUT REST API resultUrl
responses. The basic form of the JSON result is the following:

Result JSON

{
 "statuses": {
 "STATUS_CODE": [
 {
 "statusKey": "statusValue"
 }
]
 }
}

Status Codes

Status Code Key Description

 status codes in this table contain this keyALL {entity}Code Entity-specific code used to identity the entity – key labels [,]rateCode bidCode

MISSING_REQUIRED_FIELD --- The referenced entity is missing a required field

field Name of the missing/required field

ALREADY_EXISTS --- Entity already exists in this event

itemId Item ID

supplierId

alternate

ENTITY_NOT_FOUND --- Entity referenced in key could not be found

supplierId or
itemId

ID of entity that could not be found

FOR_FIRST_RATE_0_ALTERNATE_REQUIRED --- The initial rate for a given supplier/item combination must be alternate 0.

field Value will always be set to ' 'alternate

EXCEEDED_MAX_ALTERNATES ---

maxAlternates

ALTERNATE_OUT_OF_RANGE ---

field Value will always be set to ' 'alternate

EXCEEDED_CHARACTER_LIMIT --- The referenced entity contains a value that exceeds a field's established character
limit

field Name of the field that exceeded the character limit

value Number of characters attempted

limit Character limit of the field

 status codes in this table ALL ATTR_ERR_* al
 contain this keyso

id Attribute ID

ATTR_ERR_INVALID --- The referenced entity contains an invalid attribute definition

ATTR_ERR_UNKNOWN --- The referenced entity contains an unknown attribute ID

ATTR_ERR_REQUIRED_MISSING --- The referenced entity is missing a required attribute

ATTR_ERR_REQUIRED_NULL --- The referenced entity is passing NULL for a required attribute

ATTR_ERR_NUMERICAL_HIGH_RANGE --- The referenced entity contains an attribute value that exceeds the attributes
configured highValue

value Supplied value

highValue Attribute configured highValue ceiling

ATTR_ERR_NUMERICAL_LOW_RANGE --- The referenced entity contains an attribute value that falls below the attributes
configured lowValue.

value Supplied value

lowValue Attribute configured lowValue floor

ATTR_ERR_NUMERICAL_PRECISION --- The referenced entity contains an attribute value that does not match the
attribute's configured fractionalPrecision

value Supplied value

actualPrecisi
on

Precision of the value supplied in entity-body

expectedPreci
sion

Attribute configured fractionalPrecision

ATTR_ERR_NUMERICAL_FORMAT --- The referenced entity contains an attribute value that does not fit the appropriate
numerical format

value Supplied value

ATTR_ERR_DATE_TIME_FORMAT --- The referenced entity contains an attribute value that does not fit the appropriate
date format

value Supplied value

format Expected format

ATTR_ERR_BOOLEAN_NOT_FOUND --- The referenced entity contains an attribute value that does not fit the appropriate
boolean format

value Supplied value

expected Expected values

ATTR_ERR_CURRENCY_NOT_FOUND --- The referenced entity contains an attribute value that does not fit the appropriate
currency code format

value Supplied value

ATTR_ERR_SELECT_ONE_NOT_FOUND --- The referenced entity contains an attribute value that does match a valid
normalized string value

value Supplied value

Examples

Following are result file examples.

Success: Single Entity

{
 "statuses": {
 "SUCCESS": [
 {
 "rateId": "19",
 "rateCode": "rate-330"
 }
]
 }
}

As you can see in the case of a successful import, the newly created ID of the entity will be returned along with the 'code' that was supplied at the time of
import. In most cases the client will be importing multiple entities in a single import file, and so the result file must reflect a result for each entity imported.

Success: Multi Entity

{
 "statuses": {
 "SUCCESS": [
 {
 "rateId": "20",
 "rateCode": "rate-331"
 },
 {
 "rateId": "21",
 "rateCode": "rate-340"
 },
 {
 "rateId": "22",
 "rateCode": "rate-341"
 }
]
 }
}

Of course not every entity will be successfully processed. Often, and especially when many are being imported in a single file, entities may fail validation. If
this occurs you will see the reasons for these failures in the result file.

1.
2.
3.

Fail: Single Entity

{
 "statuses": {
 "ENTITY_NOT_FOUND": [
 {
 "itemId": "3",
 "rateCode": "rate-630"
 }
]
 }
}

Here we can see a rate was attempted to be imported for an item with ID 3 but that item has not been found in the associated event, so an appropriate
status code is returned noting the item ID as well as the rate 'code' so that the client can attempt to amend the rate and re-import.

Failure: Multi Entity

{
 "statuses": {
 "ENTITY_NOT_FOUND": [
 {
 "itemId": "3",
 "rateCode": "rate-630"
 }
],
 "ALREADY_EXISTS": [
 {
 "itemId": "4",
 "supplierId": "6",
 "alternate": "0",
 "rateCode": "rate-460"
 }
],
 "ATTR_ERR_REQUIRED_MISSING": [
 {
 "id": "42",
 "rateCode": "rate-140"
 },
 {
 "id": "43",
 "rateCode": "rate-140"
 }
]
 }
}

In the above result file, there are several issues being reported:

rate-630 was imported for item 3, but that item does not exist ()ENTITY_NOT_FOUND
rate-460 was imported by supplier 6 on item 4 as alternate 0, but that combination has already had a rate accepted for it ()ALREADY_EXISTS
rate-140 was missing values for two required attributed – attribute 42, and attribute 43 ()ATTR_ERR_REQUIRED_MISSING

Mixed: Multi Entity

{
 "statuses": {
 "SUCCESS": [
 {
 "rateId": "7",
 "rateCode": "rate-710"
 },
 {
 "rateId": "8",
 "rateCode": "rate-720"
 },
 {
 "rateId": "9",
 "rateCode": "rate-730"
 },
 {
 "rateId": "10",
 "rateCode": "rate-731"
 }
],
 "ATTR_ERR_LOCATION_NOT_FOUND": [
 {
 "id": "42",
 "value": "Mars",
 "rateCode": "rate-661"
 },
 {
 "id": "43",
 "value": "Jupiter",
 "rateCode": "rate-661"
 }
],
 "ALREADY_EXISTS": [
 {
 "itemId": "5",
 "supplierId": "6",
 "alternate": "0",
 "rateCode": "rate-560"
 }
]
 }
}

Finally, the most likely result you will see is a mixed result file with many successfully processed rates along with a few failures that may need to be
corrected and re-imported.

In Practice
The following section will walk-through an example Rate upload with the asynchronous entity import process using simple curl statements.

Initiate the Asynchronous Rate Import Process

Out initial step is to call the endpoint, this initiates the asynchronous import process and returns two URLs that we use in our next steps:GET Upload URL

Call: GET Upload URL

$ curl -X GET \
> -H 'Authorization: Bearer 9db78c6c-882f-403d-9857-f5518c1b3dfe' \
> -H 'Accept: application/vnd.sciquest.com.ees+json' \
> "https://ees.aso-demo-api.va.jaggaer.com/event/22195/user/155375/entity/rate/uploadUrl"

Response:

200 OK

GET Upload URL Reponse

{
 "uploadUrl": "https://s3.amazonaws.com/us-east-1.aso.devcurr.api.async-uploads-import
/259_22195_devcurr_rate_f4ffdf1b-0a76-49bf-ac00-0307373d7f4b?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-
Date=20230512T140921Z&X-Amz-SignedHeaders=content-type%3Bhost&X-Amz-Expires=300&X-Amz-
Credential=AKIAXROTDM7T32UWEPUQ%2F20230512%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-
Signature=fd31b01589966bb1a2b41dca1aa9886dcc5abceb76d917cfb2acacdbd734313e",
 "uploadUrlExpiresInSeconds": 300,
 "statusUrl": "https://ees.aso-demo-api.va.jaggaer.com/asyncStatus
/MTY4MzkwMTE5MDQ2NDoyMjE5NTo2OToxNDZiNjE4ZC03MTBkLTQ0MzUtOWIwYi04M2I2Njg0NTJkMDI6dXBsb2Fk",
 "statusUrlExpiresInSeconds": 1800
}

Upload the Rate Import File

Using the received in the response we can now upload our rate import file:uploadUrl GET Upload URL

Call: Pre-Signed PUT File Upload

$ curl -X PUT \
> -H 'Content-Type: application/vnd.sciquest.com.ees+json' \
> -d "@rates-22195-1" \
> 'https://s3.amazonaws.com/us-east-1.aso.devcurr.api.async-uploads-import/259_22195_devcurr_rate_642c1094-
8f51-42de-a32e-b2fef784381f?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20230512T141550Z&X-Amz-
SignedHeaders=content-type%3Bhost&X-Amz-Expires=300&X-Amz-Credential=AKIAXROTDM7T32UWEPUQ%2F20230512%2Fus-east-
1%2Fs3%2Faws4_request&X-Amz-Signature=99b0b96d33f2f4e97ab2e6cc4fd5ae6415b308e049f2c995fbb5a69855f4474b'

Contents of rate import file :rates-22195-1

rates-22195-1

[
 {
 "rateCode": "rate-340",
 "supplierId": 3,
 "itemId": 4,
 "alternate": 0,
 "rateCurrency": "USD",
 "contractId": "R340",
 "contractName": "Rate-340",
 "rateEffectiveDate": 1663992000000,
 "rateExpirationDate": 1695528000000,
 "rateDesignation": "Primary",
 "attributes": [
 {
 "id": "17",
 "value": "340.00"
 },
 {
 "id": "41",
 "value": "Pittsburgh"
 }
]
 }
]

Response:

200 OK

Check the Status of the Import Process

Now that the import file has been uploaded, using the received in the response we can check the status of our import statusUrl GET Upload URL
process:

Call: GET Async Status

$ curl -X GET \
> -H 'Authorization: Bearer 9db78c6c-882f-403d-9857-f5518c1b3dfe' \
> -H 'Accept: application/vnd.sciquest.com.ees+json' \
> "https://ees.aso-demo-api.va.jaggaer.com/asyncStatus
/MTY4MzkwMTE5MDQ2NDoyMjE5NTo2OToxNDZiNjE4ZC03MTBkLTQ0MzUtOWIwYi04M2I2Njg0NTJkMDI6dXBsb2Fk"

Response:

200 OK

GET Async Status Reponse

{
 "status": "initialized"
}

We have received an status indicating that the process has not started yet. If we continue polling with the we should see the initialized statusUrl
status update:

GET Async Status Reponse

{
 "status": "processing"
}

After a few more calls to () we see that the status has changed to . Finally, we will continue polling and look GET Async Status statusUrl processing
for a status:completed

GET Async Status Reponse

{
 "status": "completed",
 "resultUrl": "https://s3.amazonaws.com/us-east-1.aso.devcurr.api.async-uploads-result/259_22195_146b618d-710d-
4435-9b0b-83b668452d02?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20230512T142118Z&X-Amz-SignedHeaders=host&X-
Amz-Expires=600&X-Amz-Credential=AKIAXROTDM7T32UWEPUQ%2F20230512%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-
Signature=dc0126baf811969820866c4bd80e12620cbc7d5eb1c472732aad4657dab3506e",
 "resultUrlExpiresInSeconds": 583
}

With the status we also receive a which is how we will receive the rate import process result file.completed resultUrl

Download the Result File

With one last call to the we are able to retrieve the result file for the rate import process:resultUrl

Call: Pre-signed GET Result File

curl -X GET \
 'https://s3.amazonaws.com/us-east-1.aso.devcurr.api.async-uploads-result/259_22195_146b618d-710d-4435-9b0b-
83b668452d02?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20230512T142118Z&X-Amz-SignedHeaders=host&X-Amz-
Expires=600&X-Amz-Credential=AKIAXROTDM7T32UWEPUQ%2F20230512%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-
Signature=dc0126baf811969820866c4bd80e12620cbc7d5eb1c472732aad4657dab3506e'

Response:

200 OK

Result File (contents)

{
 "statuses": {
 "SUCCESS": [
 {
 "rateId": "16",
 "rateCode": "rate-340"
 }
]
 }
}

Summary
That should give you a good start towards working with ASO's asynchronous entity imports. All current ASO API documentation can be found at http://docs.

. aso.engineering/ Documentation is updated often. If you have any further questions or concerns do not hesitate to get in touch with your ASO Jaggaer
contact.

http://docs.aso.engineering/
http://docs.aso.engineering/

	ASO Apis - Working With Asynchronous Entity Imports (Uploads)

