ASO Apis - Working With Asynchronous Entity Imports
(Uploads)

® 1 Purpose
® 2 Workflow
® 2.1 Client Initiates Import Process
2.2 Client Uploads Import File
2.3 Asynchronous work (non-client step)
2.4 Client Polls Status
2.5 Client Downloads Result File
® 2.6 Client Processes Result File
® 3 Details
® 3.1 GET Upload URL
® 3.1.1 Request
® 3.1.1.1 Headers
¢ 3.1.1.2 URL Parameters
® 3.1.2 Response
® 3.2 Pre-Signed PUT Entity Upload URL (uploadUrl)
® 3.2.1 Request
® 3.2.1.1 Headers
® 3.2.1.2 Payload
® 3.2.1.2.1 Rate
® 3.2.1.2.2 Example
® 3.2.2 Response
® 3.3 GET Async Status (statusUrl)
® 3.3.1 Request
® 3.3.1.1 Headers
® 3.3.1.2 URL Parameters
® 3.3.2 Response
® 3.3.2.1 Examples
® 3.4 Pre-Signed GET Result URL (resultUrl)
® 3.4.1 Request
® 3.4.2 Response
® 3.5 Result File
® 3.5.1 Status Codes
® 3.5.2 Examples

® 4 In Practice
® 4.1 Initiate the Asynchronous Rate Import Process
® 4.2 Upload the Rate Import File
® 4.3 Check the Status of the Import Process
® 4.4 Download the Result File
® 5 Summary

Purpose

Depending on the number of entities uploaded in a given request and the validation and processing required for a given entity type, it is often easy to
exceed the best practice request-size or request-time limits for REST endpoints. In order to address this ASO has created an asynchronous entity import
API workflow. This document will detail how to use the ASO endpoints that implement this asynchronous workflow.

Workflow

The asynchronous import workflow can be used to upload various entities including rates and bids, and proceeds as follows:

1. Client Initiates Import Process
a. Client initiates asynchronous import process by calling EES endpoint GET Upload URL
i. Anupl oadUrl and astatusUrl are returned in the endpoint response along with url expiration details
1. The upl oadUr | is a customer specific AWS pre-signed PUT URL used to upload entity data (in JSON format) to a
private S3 bucket where it is stored encrypted (AES-256) before it is picked up and processed by ASO
2. The statusUrl is an ASO endpoint used to poll the status of the import process
2. Client Uploads Import File
a. Client uploads entities in JSON format to the upl oadUr | received in step 1.i where it is stored encrypted, and queued to await
processing
3. Asynchronous work (non-client step)
a. The import JSON file is retrieved from the queue, validated, and processed
b. When processing has completed a new AWS pre-signed URL is generated to a private S3 bucket where a JSON result file with the
detailed results of the import process is uploaded for retrieval by the client
4. Client Polls Status

a. Client polls the st at usUr | (GET Async Status endpoint) received in step 1.i and waits for the status to change to conpl et ed
i. When the GET Async Status endpoint returns a status of conpl et ed the response will also containaresul t Url —a pre-
signed GET URL (generated in step 3b) pointing to the JSON result file containing all relevant information describing the
success or failure for each of the entities sent in the step 2 upload
5. Client Downloads Result File
a. Client downloads the result file using r esul t Ur| received in step 4.i

6. Client Processes Result File
a. Client processes result file noting successes and failures for each entity imported
i. If any entities were identified to have failed the import process they should be fixed, and then resent in a new entity import
process (starting over with step 1)

Detalls

In the following section we will take a closer look at each of the endpoints/requests involved in the asynchronous entity import process.

GET Upload URL

To initiate the asynchronous entity import process a client will first call the ASO endpoint GET Upload URL. For complete documentation of this endpoint,
see GET Entity Upload URL.

Request
GET /event/{event-id}/user/{user-id}/entity/{entity}/uploadUrl
Headers
Authorization @ Bearer <ASO-bearer-access-token>
X-API-Key <ASO-customer-API-key>

Accept application/vnd.sciquest.com.ees+json

URL Parameters
event-id | ASO entity ID

user-id ASO user ID

entity ASO entity —one of [rat e, bi d]
Response
Fleld Type Description
upl oadUr | string Pre-signed URL used to upload entity import file

upl oadUr | Expi r esl nSeconds = number = Seconds remaining before upl oadUr | expires
statusUrl string URL for polling status of async entity import process

stat usUr | Expi resl nSeconds | number Seconds remaining before st at usUr| expires

200 OK

http://docs.aso.engineering/ees.html#event__event_id__user__user_id__entity__entity__uploadurl_get

GET Upload URL

{

"upl oadUrl": "https://s3.amazonaws. coni us- east - 1. aso. devcurr. api . async- upl oads- i nport
[259_22244_devcurr _r at e_Odaef 4f a- 21aa- 4575- 8462- e57f b286dce8?X- Anz- Al gor i t hnFAWS4- HVAC- SHA256&X- Az -
Dat e=20230510T172850Z&X- Anz- Si gnedHeader s=cont ent - t ype%8Bhost &X- Anz- Expi r es=300&X- Anz-
Credent i al =AKI AXROTDW T32UVWEPUQ/2F20230510%2Fus- east - 19%2Fs3%2Faws4_r equest &X- Anz-
Si gnat ur e=7d8a19e16233c21bc03705b65a8888h7722ef ee0b03f 4b81cb42610b7d27¢c229",
"upl oadUr | Expi resl nSeconds": 300,
"statusUrl": "https://ees.aso-denp-api.va.jaggaer.com asyncSt at us
/ MIY4MzczOTcz MDMBNj oyM | ONDo1MDowZGFl Zj RmiySOy MAFhLTQLNz Ut ODQ2M 11 NTdnYj | 4NnRj ZTg6dXBsb2Fk" ,
"statusUrl Expi resl nSeconds": 1800
}

Pre-Signed PUT Entity Upload URL (upl oadUr |)

The upl oadUr | returned in the GET Upload URL endpoint response is an AWS pre-signed PUT request that requires a custom Accept header and a
JSON entity import file to be sent in the request.

Request
PUT
Headers

Accept | application/vnd.sciquest.com.ees+json

Payload
JSON file containing entities to import.

Payloads are entity-specific and currently only rate entities are supported. Following are the rate entity import model details.

Rate
Field Description Type Parent Required Notes
rateCode Unique code to identify string root yes Max length 75
rate

supplierld ASO supplier ID number root yes

itemld ASO item ID number root yes

alternate Alternate indicator number root yes Initial rate must be 0; subsequent rates cannot exceed max-
alternates configured in event

rateCurrency Rate currency code string root yes Three character currency code string

contractld Contract ID string root no

contractName | Contract name string root no

rateEffectiveD | Date rate takes effect number root no Epoch time in millis (13 digits)

ate

rateExpiration = Date rate expires number root no Epoch time in millis (13 digits)

Date

rateDesignation ldentifies a rate's one of [Pri mary, Secon | root no Can only choose one of the available values

intended use dary]

attributes List of rate attributes list root no

id ASO attribute ID string attributes ' yes

value Attribute value string attributes ' yes

Example

The following example will resemble most event rate imports.

Sample Rate Import JSON

[
{
"rateCode": "rate-630",
"supplierld': 6,
"itemd": 3,
"alternate": O,
"rateCurrency": "USD',
"contractld": "c630",
"contract Nane": "Rate-C630",
"rateEffectiveDate": 1663992000000,
"rateExpirati onDate": 1695528000000,
"rateDesignation": "Primary",
"attributes": [
{
"idUo 17T,
"val ue": "630.00"
}
{
"id" 42",
"val ue": "Pittsburgh”
I
{
"id": 43",
"val ue": "Hel sinki"
}
]
I
{
"rateCode": "rate-640",
"supplierld': 6,
"itemd": 4,
"alternate": O,
"rateCurrency": "USD',
"contractld": "c640",
"contract Nane": "Rate-C640",
"rateEffectiveDate": 1663992000000,
"rateExpirati onDate": 1695528000000,
"rateDesignation": "Primary",
"attributes": [
{
"idUo 17,
"val ue": "640.00"
}
{
"id": 42",
"val ue": "Dublin"
I
{
"id": 43",
"val ue": "Stockhol nf
}
]
}
]

The only thing that will change from entity to entity and event to event when defining the JSON for an import is the entity's attributes section. In our
example above we are submitting values for three different attributes — attributes 17, 42, and 43. In order to determine exactly what attributes are available
and required for a specific event and entity, use the ASO GET Attributes by Type endpoint.

Response
200 OK

Successful upload of the import file using the pre-signed upl oadUr | results in a 200 OK.

http://docs.aso.engineering/ees.html#event__event_id__attributetype__attribute_type__apiattributes_get

403 Forbidden

A connection to the pre-signed upl oadUr | after the URL has expired — indicated by the upl oadUr | Expi r esl nSeconds field — will result in a 403

Forbidden.

GET Async Status (st at usUr)

The st at usUr | returned in the GET Upload URL endpoint response is an ASO GET Async Status endpoint that is used to poll for the status of the
asynchronous import process. For full documentation see GET Async Status.

Request

/asyncStatus/{encoded-async-pid}

Headers

Authorization @ Bearer <ASO-bearer-access-token>

X-APl-Key <ASO-customer-API-key>

Accept application/vnd.sciquest.com.ees+json

URL Parameters

encoded-async-pid

Base-64 encoded value that identifies the async process

Response
Fleld Type Description
status enum(‘initialized’,'processing’,'completed','failed’,'ca = Async process status
ncelled")
resul tUrl string Pre-signed URL used to download
results file
resul t Url Expi resl nSec = number Seconds remaining before r esul t Ur |
onds expires
Examples
200 OK
{
"status": "initialized"
}

Theini tial i zed status will be returned until an import file is uploaded and begins processing.

200 OK

"status": "processing"

Notes

This field only visible when status is conp
leted

This field only visible when status is conp
leted

The pr ocessi ng status indicates that the asynchronous import is in process and polling (if desired) should continue.

200 OK

http://docs.aso.engineering/ees.html#asyncstatus__encoded_async_pid__get

{

"status": "conpleted",

"resultUrl": "https://s3.amazonaws. conif us- east- 1. aso. devcurr. api . async-upl oads-resul t/259_22244_b6e5e4f b- d37b-
47db- ae8f - a37bef 7e0bf 3?X- Ane- Al gor i t hmFAWB4- HVAC- SHA256&X- Anz- Dat €=20230511T145312Z&X- Anez- Si gnedHeader s=host &X-
Anz- Expi r es=600&X- Anz- Cr edent i al =AKI AXROTDW/ T32UWEPUQ/2F20230511%2Fus- east - 1%2Fs3%2Faws4_r equest &X- Ane-

Si gnat ur e=f 86a039f 050ce703c7843474663d529a47ce2832f 6d51f 066389d8a389c8ddf 6",

"resul t Url Expi resl nSeconds": 596

}

The conpl et ed status indicates that the asynchronous import process has completed and the r esul t Ur | is a pre-signed GET URL that allows the client
to download the waiting result file.

403 Forbidden

Attempt to connect after the URL has expired — indicated by the st at usUr | Expi r esl nSeconds field returned in the initial GET Upload URL request —
will result in a 403 Forbidden response.

Pre-Signed GET Result URL (resul t Url)

Theresul t Ul returned in the GET Async Status endpoint response is an AWS pre-signed GET request that gives access to the asynchronous import
process result file.

Request

GET

Response

200 OK

Connection to the pre-signed URL will return 200 OK and a stream of the expected results file.
403 Forbidden

A connection to the pre-signed r esul t Ur | after the URL has expired — indicated by the r esul t Ur | Expi r esl nSeconds field — will result in a 403
Forbidden.

Result File

The result file downloaded from r esul t Ur | will be in JSON form and follows the established standard of existing ASO POST/PATCH/PUT REST API
responses. The basic form of the JSON result is the following:

Result JSON

{
"statuses": {
" STATUS_CCODE": [
{

"statusKey": "statusVal ue”
}
]
}
}

Status Codes

Status Code Key Description
ALL status codes in this table contain this key = {entity} Code Entity-specific code used to identity the entity — key labels [r at eCode, bi dCode]
M SSI NG_REQUI RED_FI ELD The referenced entity is missing a required field
field Name of the missing/required field

ALREADY_EXI STS Entity already exists in this event

ENTI TY_NOT_FOUND

FOR_FI RST_RATE_0_ALTERNATE_REQUI RED

EXCEEDED_NMAX_ALTERNATES

ALTERNATE_OUT_OF RANGE

EXCEEDED_CHARACTER LIM T

ALL ATTR_ERR * status codes in this table al
so contain this key

ATTR_ERR_| NVALI D
ATTR_ERR_UNKNOWN

ATTR_ERR REQUI RED_M SSI NG
ATTR_ERR_REQUI RED_NULL

ATTR_ERR NUVERI CAL_Hl GH_RANGE

ATTR_ERR NUMERI CAL_LOW RANGE

ATTR_ERR NUMERI CAL_PREC! SI ON

ATTR_ERR_NUMERI CAL_FORVAT

ATTR_ERR DATE_TI ME_FORVAT

itemd
supplierld

alternate

supplierldor
itemd

field
val ue
limt

id

val ue

hi ghVval ue

val ue

| owal ue

val ue

actual Preci si
on

expect edPr eci
si on

val ue

f or mat

Item ID

Entity referenced in key could not be found

ID of entity that could not be found

The initial rate for a given supplier/item combination must be alternate 0.

Value will always be setto ‘al t er nat e’

Value will always be set to 'al t er nat e'

The referenced entity contains a value that exceeds a field's established character
limit

Name of the field that exceeded the character limit
Number of characters attempted
Character limit of the field

Attribute ID

The referenced entity contains an invalid attribute definition
The referenced entity contains an unknown attribute ID

The referenced entity is missing a required attribute

The referenced entity is passing NULL for a required attribute

The referenced entity contains an attribute value that exceeds the attributes
configured highValue

Supplied value
Attribute configured highValue ceiling

The referenced entity contains an attribute value that falls below the attributes
configured lowValue.

Supplied value
Attribute configured lowValue floor

The referenced entity contains an attribute value that does not match the
attribute's configured fractionalPrecision

Supplied value

Precision of the value supplied in entity-body

Attribute configured fractionalPrecision

The referenced entity contains an attribute value that does not fit the appropriate
numerical format

Supplied value

The referenced entity contains an attribute value that does not fit the appropriate
date format

Supplied value

Expected format

ATTR_ERR_BOCLEAN_NOT_FOUND The referenced entity contains an attribute value that does not fit the appropriate
boolean format

val ue Supplied value
expect ed Expected values
ATTR_ERR_CURRENCY_NOT_FOUND The referenced entity contains an attribute value that does not fit the appropriate
currency code format
val ue Supplied value
ATTR_ERR_SELECT_ONE_NOT_FOUND The referenced entity contains an attribute value that does match a valid

normalized string value

val ue Supplied value

Examples

Following are result file examples.

Success: Single Entity

{
"statuses": {
"SUCCESS": [
{
"rateld": "19",
"rateCode": "rate-330"
}
]
}
}

As you can see in the case of a successful import, the newly created ID of the entity will be returned along with the ‘code' that was supplied at the time of
import. In most cases the client will be importing multiple entities in a single import file, and so the result file must reflect a result for each entity imported.

Success: Multi Entity

{
"statuses": {
"SUCCESS": [
{
"rateld": "20",
"rateCode": "rate-331"
}
{
"rateld": "21",
"rateCode": "rate-340"
I
{
"rateld": "22",
"rateCode": "rate-341"
}
]
}
}

Of course not every entity will be successfully processed. Often, and especially when many are being imported in a single file, entities may fail validation. If
this occurs you will see the reasons for these failures in the result file.

Fail: Single Entity

{
"statuses": {
"ENTI TY_NOT_FOUND": [
{
"itemd": "3",
"rateCode": "rate-630"
}
]
}
}

Here we can see a rate was attempted to be imported for an item with ID 3 but that item has not been found in the associated event, so an appropriate
status code is returned noting the item ID as well as the rate ‘code’ so that the client can attempt to amend the rate and re-import.

Failure: Multi Entity

{
"statuses": {
"ENTI TY_NOT_FOUND": [
{
"itemd": "3",
"rateCode": "rate-630"
}
1.
" ALREADY_EXI STS": [
{
"itemd": "4",
"supplierld": "6",
"alternate": "0",
"rateCode": "rate-460"
}
1.
"ATTR_ERR_REQUI RED M SSING': [
{
"idt: 42",
"rateCode": "rate-140"
},
{
"id": "43",
"rateCode": "rate-140"
}
]
}
}

In the above result file, there are several issues being reported:

1. rate-630 was imported for item 3, but that item does not exist (ENTI TY_NOT_FOUND)
2. rate-460 was imported by supplier 6 on item 4 as alternate 0, but that combination has already had a rate accepted for it (ALREADY_EXI STS)
3. rate-140 was missing values for two required attributed — attribute 42, and attribute 43 (ATTR_ERR_REQUI RED_M SSI NG

Mixed: Multi Entity

{
"statuses": {
"SUCCESS": [
{
"rateld": "7",
"rateCode": "rate-710"
1,
{
"rateld": "8",
"rateCode": "rate-720"
I
{
"rateld": "9",
"rateCode": "rate-730"
1,
{
"rateld": "10",
"rateCode": "rate-731"
}
1.
" ATTR_ERR_LOCATI ON_NOT_FOUND"': [
{
"idh: "42",
"val ue": "Mars",
"rateCode": "rate-661"
},
{
"id": 43",
"val ue": "Jupiter",
"rateCode": "rate-661"
}
1.
" ALREADY_EXI STS": [
{
"itemd": "5",
"supplierld": "6",
"alternate": "0",
"rateCode": "rate-560"
}
]
}
}

Finally, the most likely result you will see is a mixed result file with many successfully processed rates along with a few failures that may need to be
corrected and re-imported.

In Practice

The following section will walk-through an example Rate upload with the asynchronous entity import process using simple curl statements.

Initiate the Asynchronous Rate Import Process
Out initial step is to call the GET Upload URL endpoint, this initiates the asynchronous import process and returns two URLSs that we use in our next steps:
Call: GET Upload URL

$ curl -X GET \

> -H 'Authorization: Bearer 9db78c6c- 882f-403d-9857-f5518c1b3dfe' \

> -H 'Accept: application/vnd.sciquest.comees+json' \

> "https://ees.aso-deno-api.va.jaggaer.com event/ 22195/ user/ 155375/ entity/rate/ upl oadUrl"

Response:

200 OK

GET Upload URL Reponse

{

"uploadUrl": "https://s3.amazonaws. coni us-east - 1. aso. devcurr. api . async- upl oads-i nport
/259_22195_devcurr_rate_f 4f fdf 1b- 0a76- 49bf - ac00- 0307373d7f 4b?X- Anz- Al gor i t hnFAWB4- HVAC- SHA256&X- Az -
Dat e=20230512T140921Z&X- Ane- Si gnedHeader s=cont ent - t ype%3Bhost &X- Anz- Expi r es=300&X- Ane-
Credent i al =AKI AXROTDW/ T32UVEPUQY2F20230512%2Fus- east - 19%2Fs3%2Faws4_r equest &X- Ane-

Si gnat ur e=f d31b01589966bbla2b4ldcalaa9886dcc5abceb76d917cf b2acacdbd734313e",

"upl oadUr | Expi resl nSeconds": 300,

"statusUrl": "https://ees.aso-denp-api.va.jaggaer.com asyncSt at us
/ MTY4AMz kwMTESMDQ2NDoy M E5NT020ToxNDZi Nj E4ZCO3MTBKLTQOMz Ut OW wYi 04M21 2Nj gONTJIkMDI 6dXBsb2Fk" ,

"statusUr| Expi resl nSeconds": 1800
}

Upload the Rate Import File

Using the upl oadUr | received in the GET Upload URL response we can now upload our rate import file:

Call: Pre-Signed PUT File Upload

$ curl -X PUT \

> -H 'Content-Type: application/vnd.sciquest.com ees+json" \

> -d "@ates-22195-1" \

> 'https://s3.anmazonaws. cont us-east - 1. aso. devcurr. api . async- upl oads-i nport/259_22195_devcurr_rate_642c1094-

8f 51- 42de- a32e- b2f ef 784381f ?X- Anz- Al gor i t hnFAWS4- HVAC- SHA2568&X- Ane- Dat e=20230512T141550Z8&X- Anz-

Si gnedHeader s=cont ent - t ype¥8Bhost &X- Anez- Expi r es=3008&X- Anz- Cr edent i al =AKI AXROTDM7 T32UVEPUQRF20230512%2Fus- east -
192Fs3%2Faws4_r equest &X- Anz- Si gnat ur e=99b0b96d33f 2f 4e97ab2e6cc4f d5ae6415b308e049f 2c995f bb5a69855f 4474b’

Contents of rate import file r at es- 22195- 1:

rates-22195-1

[

{
"rateCode": "rate-340",
"supplierld": 3,
"itemd": 4,
"alternate": O,
"rateCurrency": "USD',
"contractld": "R340",
"contract Nane": "Rate-340",
"rateEffectiveDate": 1663992000000,
"rat eExpirationDate": 1695528000000,
"rateDesignation": "Primry",
"attributes": [
{
"idt 17T,
"val ue": "340.00"
b
{
"id": 41",
"val ue": "Pittsburgh"
}
]
}
]
Response:

200 OK

Check the Status of the Import Process

Now that the import file has been uploaded, using the st at usUr | received in the GET Upload URL response we can check the status of our import
process:

Call: GET Async Status

$ curl -X GET \

> -H 'Authorization: Bearer 9db78c6c-882f-403d-9857-f5518c1b3dfe’ \

> -H 'Accept: application/vnd.sciquest.com ees+json' \

> "https://ees.aso-denp-api.va.jaggaer.com asyncSt at us

/ MTY4AMz kwMTESMDQ2NDoy M E5NT020ToxNDZi Nj E4ZCO3MIBKLTQOMz Ut OW wYi 04M21 2Nj gONTJIkMDI 6dXBsb2Fk*"

Response:
200 OK

GET Async Status Reponse

{
}

"status": "initialized"

We have received ani ni ti al i zed status indicating that the process has not started yet. If we continue polling with the st at usUr | we should see the
status update:

GET Async Status Reponse

{
}

"status": "processing"

After a few more calls to GET Async Status (st at usUr |) we see that the status has changed to pr ocessi ng. Finally, we will continue polling and look
for a conpl et ed status:

GET Async Status Reponse

{

"status": "conpleted",

"resultUrl": "https://s3.amazonaws. coni us- east-1. aso. devcurr. api . async-upl oads-resul t/259_ 22195 146b618d- 710d-
4435- 9b0b- 83b668452d02?X- Ane- Al gor i t hmFAWB4- HVAC- SHA256&X- Anez- Dat €=20230512T142118Z&X- Anez- Si gnedHeader s=host &X-
Anz- Expi r es=6008&X- Anz- Cr edent i al =AKI AXROTDW/ T32UWEPUQ/2F20230512%2Fus- east - 1%2Fs3%2Faws4_r equest &X- Anz-

Si gnat ur e=dc0126baf 811969820866c4bd80e12620cbc7d5eb1c472732aad4657dab3506e",

"resul t Ul Expi resl nSeconds": 583

}

With the conpl et ed status we also receive ar esul t Url which is how we will receive the rate import process result file.

Download the Result File

With one last call to the r esul t Ur| we are able to retrieve the result file for the rate import process:

Call: Pre-signed GET Result File

curl -X GET \

"https://s3. amazonaws. coni us- east - 1. aso. devcurr. api . async- upl oads-resul t/259_22195 146b618d- 710d- 4435- 9b0b-
83b668452d02?X- Anez- Al gor i t hnFAWB4- HVAC- SHA256&X- Anz- Dat €=20230512T142118Z8&X- Anez- Si gnedHeader s=host &X- Anz-
Expi r es=6008&X- Anz- Cr edent i al =AKI AXROTDW/ T32UWEPUQY/2F20230512%Fus- east - 19%2Fs3%2Faws4_r equest &X- Anez-

Si gnat ur e=dc0126baf 811969820866c4bd80e12620cbc7d5eb1c472732aad4657dab3506e’

Response:

200 OK

Result File (contents)

"statuses": {
"SUCCESS": [
{
"rateld": "16",
"rateCode": "rate-340"

Summary

That should give you a good start towards working with ASQO's asynchronous entity imports. All current ASO APl documentation can be found at http://docs.
aso.engineering/. Documentation is updated often. If you have any further questions or concerns do not hesitate to get in touch with your ASO Jaggaer

contact.

http://docs.aso.engineering/
http://docs.aso.engineering/

	ASO Apis - Working With Asynchronous Entity Imports (Uploads)

