ASO APIs - Working With Asynchronous Download
Endpoints

1 Purpose
2 Identifying
3 Workflow
4 Details
® 4.1 GET Async Status
® 4.1.1 Request Details
® 4.1.1.1 Headers
® 4.1.2 Response Details
® 4.1.2.1 Examples
® 4.2 Pre-Signed GET URL (resultUrl)
® 5In Practice
® 5.1 Programmatic Example
® 5.1.1 Model
® 5.1.2 Imports
® 5.1.3 Code

® 6 Summary

Purpose

Depending on the ASO endpoint and the size of the event being targeted, it is often easy to exceed the best practice response-size limit for REST
endpoints. In order to address this ASO has created an asynchronous API workflow. This document will detail how to use the ASO endpoints that
implement this asynchronous workflow.

Identifying
When browsing the ASO API documentation (http://docs.aso.engineering/) you can identify asynchronous endpoints by:

® noting the '(Asynchronous)' designation in the endpoint name,
® reviewing the endpoint description,
® or most notably the endpoint URL will end in/ async.

Workflow

The asynchronous APl workflow is as follows:

1. GET */async request received by ASO resource server
2. GET Async Status URL and expiration details are returned to client caller with 202 Accepted
a. NOTE: The async status URL is used to poll-for and download the requested file once it is asynchronously generated and made
available (details below).
3. Asynchronous thread:
a. ASO resource server generates the desired data
b. ASO resource server uploads the data to a private S3 bucket where it is stored encrypted (AES-256).
4. Asynchronous thread:
a. After a configured time interval the ASO resource server deletes the file from the S3 bucket.

Details

All ASO asynchronous endpoints will return a synchronous response with an async status URL and an expires-in time in seconds for which the URL will
remain valid.

GET */async Response

{

"statusUrl": "https://ees.aso-denp-api.va.jaggaer.con asyncSt at us
/ MTYyNj gOMIc3M | 4NzoyM g1MDoxNTphNThl Zj ZhMCOINTJII LTRhMeI t Yj JKOCLi Nz Q2MAY y YTAXNZ E=" ,
"statusUrl Expi resl nSeconds": 1800

}

http://docs.aso.engineering/

The URL that is returned to the calling client from an ASO asynchronous endpoint invokes the GET Async Status endpoint and allows the client to poll the
status of the corresponding asynchronous process.

GET Async Status

Endpoint that returns the status of an asynchronous process. For full documentation follow GET Async Status.
Request Details
Headers

Authorization @ Bearer <ASO-bearer-access-token>

X-API-Key <ASO-customer-API-key>

Accept application/vnd.sciquest.com.ees+json

Response Details

Fleld Type Description Notes
status enum(‘processing’,'completed','failed’,'cancell ' Async process status
ed’)
resultUrl string Pre-signed URL used to download resulting | This field only visible when status is * conpl et
file ed'

resultUrlExpiresinSecon | number Seconds remaining before resultUr | expires = This field only visible when status is ' conpl et

ds ed'
Examples
200 OK

{

"status": "processing"
}

Obviously the ' processi ng' status indicates that the asynchronous process is still processing and polling (if desired) should continue.

200 OK

"status": "conpleted",

"resultUrl": "https://s3.us-east-2. amazonaws. coni us- east - 2. aso. ga. api . async- downl oads/ XXX_XXXXX_50a0a503-
a029- 4316- 894f - 3a7f dcf 07ab2?X- Anz- Al gor i t hnFAWS4- HVAC- SHA2568&X- Ane- Dat e=20210716T154359Z&X- Anz-
Si gnedHeader s=host &X- Anz- Expi r es=300&X- Anez- Cr edent i al =AKI ASHYMXHER7KSSZTNY®2F20210716%2Fus- east - 2%2Fs3%
2Faws4_r equest &X- Anz- Si gnat ur e=7cdbc913ef 900e2eef 7b5f 6bed6a592d056e52d611053976a11e3175d92eb674",

"resul t Url Expi resl nSeconds": 289
}

The ' conpl et ed' status indicates that the asynchronous process has completed and the downl oadUr | is a pre-signed URL that allows the client to
download the waiting file.

403 Forbidden

Attempt to connect after the URL has expired — indicated by the expi r esl nSeconds field returned in the initial /async request — will result in a 403
Forbidden response.

Pre-Signed GET URL (resul t Url)

Theresul t Ul field returned by a' conpl et ed'" GET Async Status response contains an AWS S3 pre-signed URL.

200 OK

http://docs.aso.engineering/ees.html#asyncstatus__encoded_async_pid__get

Connection to the pre-signed URL will return 200 OK and a stream of the expected file. A detailed description of each endpoint's entity response data can
be found in each endpoint's documentation at http://docs.aso.engineering/.

403 Forbidden

A connection to the pre-signed URL after the URL has expired — indicated by the r esul t Ur | Expi r esl nSeconds field returned ina' conpl et ed" GET
Async Status response — will result in a 403 Forbidden.

In Practice

Programmatic Example

The following is a simple Java example of how to poll and download the file once it is available.

Model

Model

public class AsyncStatus {
private String status;
private String resultUrl;
private Integer resultUrl ExpireslnSeconds;

public AsyncStatus() { }

public String getStatus() { return status; }
public void setStatus(String status) { this.status = status; }

public String getResultUrl () { return resultUl; }
public void setResultUrl (String resultUl) { this.resultUl = resultUl; }

public Integer getResultUrl ExpireslnSeconds() { return resultUrl ExpireslnSeconds; }

public void setResul t Ul Expi resl nSeconds(I nteger resultUrl ExpireslnSeconds) { this.
resul t Url Expi resl nSeconds = resul t Ul Expi resl nSeconds; }

}

This POJO can be used to serialize the JSON from the GET Async Status response.
Imports

i mport java.io.BufferedReader;
import java.io.lnputStream

i mport java.io.lnputStreanReader;
i nport java.net.HttpURLConnecti on;
i mport java.net.URL;

inport com fasterxnl.jackson. databi nd. Obj ect Mapper ;

We are using the Jackson libraries to serialize/deserialize our JSON.

Code

Use the GET Async Status URL returned by any ASO asynchronous endpoint to poll the asynchronous process status until the process has completed.

http://docs.aso.engineering/

Polling

Systemout. println("=== Polling Async Status ===");

URL url = new URL(asyncStatusUrl Str);

do {
connection = (HttpURLConnection) url.openConnection();
connecti on. set Request Property("Accept", "application/vnd.sci quest.com ees+j son");
connecti on. set Request Property("Aut hori zation", "Bearer "+bearerAccessToken);

connection. set Request Property("X- APl - Key", api Key);
int responseCode = connecti on. get ResponseCode();
if (responseCode == 200) {
StringBuil der responseBuil der = new StringBuilder();
try (I nputStreamcontent = connection.getlnputStrean()) {
Buf f eredReader in = new BufferedReader (new | nput StreanReader (content));
String inputlLine;
while ((inputLine = in.readLine()) !'= null) {
responseBui | der . append(i nput Li ne);
}
}

/'l use jackson to serialize response
asyncSt atus = nmapper.readVal ue(responseBuil der.toString(), AsyncStatus.class);
Systemout. println("Async status: ["+response.getStatus()+"]");
if (asyncStatus.getStatus().equal s("processing")) {
/1 sleep for desired interval because status is still 'processing'
System out. println("Sleeping "+interval Seconds+"s");
Thr ead. sl eep(i nterval Seconds * 1000);

}
}
elapsedMllis = SystemcurrentTineMIlis() - startMIlis;
/1 continue polling while we are getting 200's AND still processing AND under the configured maxi numtime
} while (connection. get ResponseCode() == 200 && asyncStatus. get Status().equal s("processing"”) && elapsedMlIlis <

(maxSeconds * 1000));

The above logic will poll the GET Async Status endpoint until it finishes processing, fails, or the total polling time eclipses the configured maximum time.

Once the GET Async Status endpoint returns a' conpl et ed' status the resulting response will also contain aresul t Url — a presigned-url URL that
can be used to download the expected file.

switch (asyncStatus.getStatus()) {
case "conpl eted":
/1 handl e conpl et ed
System out. printl n("Downl oadi ng conpl eted async file...");
url = new URL(asyncStatus.getResultUrl ());
connection = (HttpURLConnection) url.openConnection();
int responseCode = connecti on. get ResponseCode();
if (responseCode == 200) {
System out. println("Returned response (200): ");
/1 download file
try (I nputStreamcontent = connection.getlnputStrean()) {
Buf f eredReader in = new BufferedReader (new | nput St reanReader (content));
String inputlLine;
while ((inputLine = in.readLine()) != null) {
/'l wite file to std out
System out . printl n(i nputLine);
}
}
} else if (responseCode == 403) {
Systemout.printin("File no longer available (403)");
} else if (responseCode == 404) {
Systemout. println("WARNING File not yet available (404); Downl oad
ABORTED") ;
} else {
System out. println("Unexpected response code: "+responseCode);
}
br eak;
case "cancel | ed":
/1 handl e cancel |l ed. ..
br eak;
case "failed":
/1 handle failed...
br eak;

In this example, for a' conpl et ed'" AsyncStatus object we connect to the pre-signed URL (resultUr | field) and write the downloaded file to standard out.

Summary

That should get you started working with ASO asynchronous endpoints. All current ASO API documentation can be found at http://docs.aso.engineering/. D
ocumentation is updated often. If you have any further questions or concerns do not hesitate to get in touch with your ASO Jaggaer contact.

http://docs.aso.engineering/

	ASO APIs - Working With Asynchronous Download Endpoints

